Some More Geometric Data
Structures (Windowing cont.)

Computational Geometry — Recitation 12

Windowing (reminder)

* We have seen how to find axis-aligned lines intersecting an axis-aligned
window.

. | e ‘.

Interval trees (reminder)

 \We have used interval trees:

* In the relevant nodes we searched for the end points contained in a
rectangle unbounded from one side.

* For this we have used 2d-Range Trees and then improved to
Priority Search Trees.

Non-Axis-Alighed segments

* What about general segments, that is, not axis-aligned?
* We will restrict the problem to non-intersecting segments.

* Can we use the solution we already have? N
* Use segment bounding box instead! z
* Works quite well in practice.

e Worst case is bad:

y//
7
—

Non Axis-Aligned segments

e Can we adopt interval trees?

* The key point in interval trees is knowing
that one side of the segment is to the right
(or left) of g.

* This doesn’t help much if we allow
arbitrary orientation.

[—o0: qx] X [qy : q]

Xmid

Segment trees

* Let’'s remember what interval trees solves in the first place:
* Finding the 1d-segments that cover a given point x.
e Can we devise another data structure for that?

* If the segments doesn’t overlap we can store them in a BST, and looking
for the one segment that intersects x is easy.

e But what if they do overlap?

Segment trees

* Given a set S of overlapping segments, we want to find which segments
Intersects a point x.

* Create a new set, of non overlapping segments and store it in a BST.
* Add zero-size segments for the end points.

* In each leaf store a list of (original) segments that intersects it.

“|Sl —>S4_ —>S7 —>58
o

Segment trees

* We will save these segments in a searching tree

®
O ()
() ()
() ()
() () ® @ (2 . e N
AN
N || L O LA LR L
52,85 55 .\‘3)5‘5 S3, St S4,53,S5
L 1 I_i
] 1 o) $3

Segment trees — (space complexity) |1 ;
JaEEEEEEE—nEEEEIEE
S AN IR
* What is the space complexity of this 188 RERE: 4k o 1A
data structure? 13k ins Iminst Rl
* Each segment can appear in many leaves. -+ - . ' | | ———— I | |
* The space complexity is O(n?). ¥ -]
* Can we improve it? _
* If a segment appear in consecutive leaves,
we can store it in the parent node instead.
* s will be stored in v S /I‘I'S /“35 P S e S /‘.ﬂ
and u_5. | " |

Segment trees

* The complete data structure:

O
O ()
$2,55 S5
(O ()
S . 53 ‘
1
S
() @ () () OUEN RO Nl
AN
Hanl | OO O OO0 0o g
52,85 S3 AV
: I \Y) ISz I
S I 2 I : I I
I ; 4

Segment trees (space complexity)

 What is the space complexity now?

* Each segment can appear at most twice at any level of the tree.
* Proof: Assume to the contrary: |

* All the leaves between v; and v5 contain a segment s.

* Then, all the leaves in the subtree of parent(v,)
also contain s, thus s will appear in parent(v,)

) parent (V)
and not in v,.

* Conclusion: each segment is stored in O(logn))y, v
nodes.

* The space complexity is O(nlogn).

V3

Segment trees

* Building a segment tree can also be done in O(nlogn).
* How do we find all the segments covering x?

e Search for x in the tree, report all the segment stored in nodes along
the search path. (next slide)

* Notice that a segment tree does the same job as a plain interval tree,
but with worse space complexity.

Complexity: O(logn + k)
- k is the number of reported segments.

Segment trees - Query

* The complete data structure:

O
®, ®
$3,S55 85
O L vV
Sl . 53 '
51
() ® (v Q) (0 & /NS .

| OO0 O O 0O [O00n 0o

Segment trees

* So how does segment trees help us?

* Given a set of non-intersecting segments, build a segment tree to
their projection on the x-axis.

* Using that we can find potential segments.
Segments that cover the x coordinate of the window edge.

* How does this help? ./\,

—
o

Segment trees

* Each internal node represents
the union of segments of its
sons.

* A segment will be stored in a node

if it covers the whole node-segment. !
* This means that the set of -
segments stored in the node is {

well ordered. P

Segment trees

* The set of segments in each node is well ordered.
* Intuition: it looks like a (bended) ladder.

* How can we this to find which segments
intersect the window edge?

e Store the segments in a BST!

Segment trees - Complexity

* The space complexity is not affected: O(n logn)

* The search in each node is done in O(logn), thus, the query
complexity is 0(log® n + k)

* Building the tree takes O(nlog? n).
* It can be improved to O(nlogn) using some tricks.

