
7

Some More Geometric Data 
Structures (Windowing cont.)
Computational Geometry – Recitation 12



Windowing (reminder)

• We have seen how to find axis-aligned lines intersecting an axis-aligned 
window.



Interval trees (reminder)

• We have used interval trees:

• In the relevant nodes we searched for the end points contained in a 
rectangle unbounded from one side.
• For this we have used 2d-Range Trees and then improved to 

Priority Search Trees.

𝑥!"#

…



Non-Axis-Aligned segments

• What about general segments, that is, not axis-aligned?
• We will restrict the problem to non-intersecting segments.

• Can we use the solution we already have?
• Use segment bounding box instead!
• Works quite well in practice.
• Worst case is bad:



Non Axis-Aligned segments

• Can we adopt interval trees?
• The key point in interval trees is knowing

that one side of the segment is to the right
(or left) of 𝑞.
• This doesn’t help much if we allow 

arbitrary orientation.



Segment trees

• Let’s remember what interval trees solves in the first place:
• Finding the 1𝑑-segments that cover a given point 𝑥.
• Can we devise another data structure for that?
• If the segments doesn’t overlap we can store them in a BST, and looking 

for the one segment that intersects 𝑥 is easy.
• But what if they do overlap?



Segment trees

• Given a set 𝑆 of overlapping segments, we want to find which segments 
intersects a point 𝑥.
• Create a new set, of non overlapping segments and store it in a BST.
• Add zero-size segments for the end points.

• In each leaf store a list of (original) segments that intersects it.

𝑆! 𝑆" 𝑆# 𝑆$



Segment trees

• We will save these segments in a searching tree 

, 𝑠! , 𝑠"𝑠!, 𝑠", 𝑠%𝑠%



Segment trees – (space complexity)

• What is the space complexity of this 
data structure?
• Each segment can appear in many leaves.
• The space complexity is 𝑂(𝑛!).
• Can we improve it?
• If a segment appear in consecutive leaves,

we can store it in the parent node instead.
• 𝑠 will be stored in 𝑣

and 𝜇_5. s s sss

s



Segment trees

• The complete data structure:



Segment trees (space complexity)

• What is the space complexity now?
• Each segment can appear at most twice at any level of the tree.
• Proof: Assume to the contrary:
• All the leaves between 𝑣" and 𝑣# contain a segment 𝑠.
• Then, all the leaves in the subtree of 𝑝𝑎𝑟𝑒𝑛𝑡 𝑣!

also contain 𝑠, thus 𝑠 will appear in 𝑝𝑎𝑟𝑒𝑛𝑡 𝑣!
and not in 𝑣!.
• Conclusion: each segment is stored in 𝑂(log 𝑛)

nodes.
• The space complexity is 𝑂(𝑛 log 𝑛) .



Segment trees

• Building a segment tree can also be done in 𝑂(𝑛 log 𝑛) .
• How do we find all the segments covering 𝑥?
• Search for 𝑥 in the tree, report all the segment stored in nodes along 

the search path. (next slide) 
• Notice that a segment tree does the same job as a plain interval tree, 

but with worse space complexity.



Segment trees - Query

• The complete data structure:

Complexity: 𝑂(log 𝑛 + 𝑘)
- 𝑘 is the number of reported segments.



Segment trees

• So how does segment trees help us?
• Given a set of non-intersecting segments, build a segment tree to 

their projection on the 𝑥-axis.
• Using that we can find potential segments. 

Segments that cover the 𝑥 coordinate of the window edge.
• How does this help?



Segment trees

• Each internal node represents 
the union of segments of its 
sons.
• A segment will be stored in a node

if it covers the whole node-segment.
• This means that the set of

segments stored in the node is
well ordered.



Segment trees

• The set of segments in each node is well ordered.
• Intuition: it looks like a (bended) ladder.

• How can we this to find which segments 
intersect the window edge?
• Store the segments in a BST!



Segment trees - Complexity

• The space complexity is not affected: 𝑂(𝑛 log 𝑛)
• The search in each node is done in 𝑂(log 𝑛), thus, the query 

complexity is 𝑂(log! 𝑛 + 𝑘)
• Building the tree takes 𝑂 𝑛 log! 𝑛 .
• It can be improved to 𝑂(𝑛 log 𝑛) using some tricks.




